Programación de GPUs Usando Compute Unified Device Architecture (CUDA)

Precio especial 18,90 € Precio habitual 19,90 €
Disponible (en stock)
ISBN
9788499648552
Nombre del producto:
Programación de GPUs Usando Compute Unified Device Architecture (CUDA)
Peso:
N/D
Fecha de edición:
9 mar. 2020
Número de Edición:
1
Autor:
García García, Alberto / Orts Escolano, Sergio / Cecilia Canales, José María / García Rodríguez, José
Idioma:
Español
Formato:
Libro
Páginas:
172
Lugar de edición:
MADRID
Colección:
PROFESIONAL RA-MA
Encuadernación:
Rústica

El gran aumento en el rendimiento del hardware gráfico, junto con mejoras recientes en su programabilidad, han hecho de dicho hardware un referente como plataforma para las tareas de cómputo exigentes en una gran variedad de dominios de uso. Los últimos años ha crecido el interés en los conocidos colectivamente como GPGPU (Unidades de procesamiento gráfico de propósito general).
La formación de especialistas en el uso de GPUs (Unidades de Procesamiento Gráfico) es importante no sólo para la aceleración de juegos por ordenador y aplicaciones multimedia; sino para la aceleración de aplicaciones científicas de todo tipo (inteligencia y visión artificial, robótica, medicina, física, química, matemáticas, biología, computación gráfica y muchos otros.
El objetivo de este libro es iniciar a la programación de GPUs dando una visión general de los principales conceptos, pero también de aspectos avanzados y aplicaciones científicas.

Resumen I
Prólogo III
Agradecimientos V
1. El Nacimiento del Paradigma GPGPU 1
1.1. Hacia la Unidad de Procesamiento Gráfico
1.2. Primeros Pasos en Computaci´on sobre GPUs
1.3. Evolución y Estancamiento de las CPUs
1.4. El Ascenso de la Computaci´on sobre GPUs
2. Introducción a CUDA
2.1. Arquitectura Hardware
2.2. Arquitectura Software
3. Modelo de Procesamiento
3.1. Lanzamiento de Kernels
3.2. Mallas, Bloques, Hilos, Warps y Lanes
3.3. Limitaciones de Memoria
3.4. Limitaciones de Tiempo
3.5. Escalabilidad Transparente y Planificación
3.6. Métodos de Sincronización
3.7. Control de flujo
4. Memorias CUDA
4.1. Jerarquías de Memorias
4.2. Memoria en el Host (CPU)
4.2.1. Pinned memory
4.3. Memoria en el Device (GPU)
4.4. Consideraciones de Rendimiento
4.5. Exprimiendo el Ancho de Banda de la Memoria Global
5. Patrones Paralelos
5.1. Reducción de un vector
5.2. Histograma
5.3. Scan
6. Aspectos Avanzados
6.1. CUDA Streams y uso de múltiples GPUs
6.2. Medición de Tiempos y Eventos
6.3. Paralelismo Dinámico (CUDA 5.0)
6.4. Memoria Unificada (CUDA 6.0)
6.5. Precisión Mixta (CUDA 8.0)
6.6. Primitivas de Warps (CUDA 9.0)
6.7. Interoperabilidad con OpenGL
7. Estrategias de Paralelización para el Algoritmo de la Colonia
de Hormigas en la GPU
7.1. Ant Colony Optimization para el Travelling Salesman Problem
7.2. Estrategias de paralelización
7.3. Experimentos
7.4. Conclusiones y Trabajo Futuro
8. rCUDA (remote CUDA)
8.1. ¿Por qué rCUDA?
8.2. ¿Qué es rCUDA?
8.3. Otras soluciones similares a rCUDA
8.4. ¿Còmo funciona rCUDA?
8.5. Beneficios proporcionados por rCUDA
A. Cuestiones
Bibliografía

Escribir Su propia reseña
Estás revisando:Programación de GPUs Usando Compute Unified Device Architecture (CUDA)
Su valoración