Algorithmic Aspects of Machine Learning

Precio especial 33,63 € Precio habitual 35,40 €
Sin stock (en reposición, posible disponibilidad en 7-10 días)
ISBN
9781316636008
Nombre del producto:
Algorithmic Aspects of Machine Learning
Fecha de edición:
1 sept. 2018
Número de Edición:
Autor:
Moitra, Arkur
Idioma:
Inglés
Formato:
Libro
Páginas:
158
Lugar de edición:
N/D
Colección:
N/D
Encuadernación:
Rústica

This book bridges theoretical computer science and machine learning by exploring what the two sides can teach each other. It emphasizes the need for flexible, tractable models that better capture not what makes machine learning hard, but what makes it easy. Theoretical computer scientists will be introduced to important models in machine learning and to the main questions within the field. Machine learning researchers will be introduced to cutting-edge research in an accessible format, and gain familiarity with a modern, algorithmic toolkit, including the method of moments, tensor decompositions and convex programming relaxations. The treatment beyond worst-case analysis is to build a rigorous understanding about the approaches used in practice and to facilitate the discovery of exciting, new ways to solve important long-standing problems.

1. Introduction
2. Nonnegative matrix factorization
3. Tensor decompositions – algorithms
4. Tensor decompositions – applications
5. Sparse recovery
6. Sparse coding
7. Gaussian mixture models
8. Matrix completion.

Ankur Moitra is the Rockwell International Associate Professor of Mathematics at Massachusetts Institute of Technology. He is a principal investigator in the Computer Science and Artificial Intelligence Lab (CSAIL)

Escribir Su propia reseña
Estás revisando:Algorithmic Aspects of Machine Learning
Su valoración